

Life testing of Yb₁₄MnSb₁₁ for high performance thermoelectric couples

Jong-Ah Paik*, Erik Brandon, Thierry Caillat, Richard Ewell, and Jean-Pierre Fleurial

Jet Propulsion Laboratory
California Institute of Technology

Outline

- Introduction
 - Thermoelectric materials and couples
 - Life verification for thermoelectric couples
 - Sublimation
- Sublimation life test with Yb₁₄MnSb₁₁
 - Development for sublimation suppression layer for Yb₁₄MnSb₁₁
 - Sublimation coupon test
- Thermoelectric properties life test with Yb₁₄MnSb₁₁
- Contact resistance life test with Yb₁₄MnSb₁₁ /Mo/ Yb₁₄MnSb₁₁ coupon
- Summary

Thermoelectric Materials and Device Technology

Mars Science Laboratory

- Radioisotope Thermoelectric Generator
 - Used several deep space missions including Voyager and Cassini
 - Operated continuously more than 30 years

Power generation

- Thermal gradient leads to net diffusion of charge carriers to the cold side
 - Hot charge carries move faster
 - Charge carriers diffused to the cold side
 - Charge is built up on the cold side
- Seebeck voltage is established from thermal gradient
 - V= $\alpha\Delta T$
 - α is Seebeck coefficient
 - Convert heat to electricity

• Efficiency of thermoelectric generator

$$\eta = \frac{power \quad output}{heat \quad input} = \frac{\alpha^2 \sigma \Delta T^2}{\kappa \Delta T + \alpha T_h I - \frac{I^2 \rho}{2}}$$

Simplified efficiency

$$\eta = \frac{\Delta T}{T_h} \cdot \frac{\sqrt{1 + zT_{avg}} - 1}{\sqrt{1 + zT_{avg}} + \frac{T_c}{T_h}}$$

- The efficiency becomes carnot efficiency $(\Delta T/T_h)$ when zT goes to infinity.

$$zT = \frac{\alpha^2 \sigma}{\lambda} T = \frac{\alpha^2}{\rho \lambda} T$$

higher zT → higher efficiency

 α = Seebeck coefficient, σ =electrical conductivity, ρ = electrical resistivity T_h =hot side temperature, T_c =cold side temperature, ΔT = T_h - T_c , T_{avg} = $(T_h+T_c)/2$ κ = thermal conductivity

Status of TE materials for high efficiency couples

	n-type Skutterudite	p-type Skuttrudite	Yb ₁₄ MnSb ₁₁ (Zintl)	La _{3-x} Te ₄	
Maximum operating temperature	873K	873K	1273K	1273K	
Average ZT			0.65 [1273 to 473K]	0.73 [1273 to 473K]	
TE life test	In-progress	In-progress	Stable after 6 month aging at 1273K and 1323K	In-progress	
Sublimation suppression	Demonstrated with aerogel (5× 10 ⁻⁷ g/cm ² /hr for 6 months at 873K)	Demonstrated with aerogel (5× 10 ⁻⁷ g/cm ² /hr for 6 months at 873K)	Demonstrated with alumina paste (2× 10 ⁻⁶ g/cm ² /hr for 18 months at 1273K)	In-progress	
Metallization			Stable after 1500 hr aging at 1273K		

Comparison of TE couples

	N- PbTe	P- TAGS	N-RTG SiGe	P-RTG SiGe	N- nano- SiGe	P-Zintl	N-LaTe	P-Zintl	N- LaTe/ p-SKD	P-Zintl/ n-SKD
Average ZT	0.90	1.1	0.69	0.41	0.66	0.73	0.65	0.73	0.98	0.92
T _{max} (K)	800	675	1273	1273	1273	1273	1273	1273	1273	1273
Couple Efficiency	7.0% [800 to 485K]		7.5% [1273 to 575 K]		10.5% [1273 to 473 K]		10.2% [1273 to 473 K]		13.6% [1273 to 473 K]	
Application	MMRTG		GPHS-RTG		ARTG		ARTG		ARTG	

Life test for thermoelectric couples

- Reason for life test
 - RTGs for deep space missions need to operate more than 10 years
 - Life test is required to verify the stability of thermoelectric couples
- Component life test
 - Preparing coupons and verifying stability of each component
 - Isolating each component
 - Subjects for component life test
 - Thermoelectric properties of materials
 - Bonding interface
 - Sublimation
- Coupon life test
 - Needed to verify the performance and stability with fabricated couples

Sublimation phenomenon

Sublimation phenomenon on a skutterudite leg

- Most of TE materials used in power generation have peak figures of merit at the temperature where sublimation is significant.
- Sublimation leads to reduction of effective cross section, which leads to decrease in conversion efficiency
- Sublimed species can condense on cold side, which can cause short circuit on the device.

Sublimation suppression

- Sublimation suppression goal
 - 5~10% effective cross sectional reduction after 14 years operation

Requirements for sublimation suppression barriers

- Chemical stability against TE materials
- Thermal stability at the operating temperature
- Withstanding stress during thermal cycling
- No significant effect on system performance

Background on previous sublimation suppression methods

- SiGe RTG technology employed Si₃N₄/SiO₂ thin films
- PbTe/TAGS technology employed an inert cover gas

Beginning of life sublimation rate of TE materials in vacuum

Initial baseline sublimation rates of TE materials under vacuum

Development of sublimation suppression layer for Yb₁₄MnSb₁₁

- Challenge
 - High operating temperature (1273K)
 - Chemical reactivity
 - High CTE (~20 at 1273K)
 - High bare sublimation rate
- Materials with limited reactivity against Yb₁₄MnSb₁₁ at 1273K
 - Some refractory metals such as Mo, aluminum oxide, and carbon
- Any candidate with matching CTE
 - None
- A way to alleviate CTE mismatch
 - Adopting porous layer
- Selected sublimation suppression barrier for Yb₁₄MnSb₁₁
 - Porous aluminum oxide layer (commercial alumina paste from Cotronics)

Sublimation coupon test

Sublimation test set-up

Yb₁₄MnSb₁₁ Sublimation coupon

Sublimation coupon preparation

- Prepare a Yb₁₄MnSb₁₁ block
- Prepare graphite blocks
- Bond graphite blocks to the Yb₁₄MnSb₁₁ block using alumina paste
- Apply alumina paste on the periphery of the Yb₁₄MnSb₁₁ block
- Put the prepared assembly in a metallic clamp

Sublimation test

 Put the coupon into dynamic vacuum furnace and age desired period

Sublimation rate measurement

 Measure the weight change of the coupon before and after aging and calculate the sublimation rate

Sublimation life test with Yb₁₄MnSb₁₁ at 1273K

Sublimation rate continuously met the goal during 18 month coupon test

Clogging of alumina paste layer

Hot side (~1273K)

Cold side (~773K)

 Hot side SEM image shows clogging of alumina paste layer with ytterbia after 1500 hr in-gradient test

 Cold side SEM image shows no clogging of alumina paste layer

In-gradient test set-up

TE properties life test with Yb₁₄MnSb₁₁

Figure of merit of Yb₁₄MnSb₁₁

There is no degradation on TE properties of Yb₁₄MnSb₁₁ after 6 month aging at either 1273K or 1323K.

Yb₁₄MnSb₁₁/Mo/Yb₁₄MnSb₁₁ Contact Resistance Life Testing after 1500 hr aging at 1273K

Yb₁₄MnSb₁₁/Mo/Yb₁₄MnSb₁₁ coupon after 1500 hr aging at 1273K

• A Yb₁₄MnSb₁₁/Mo/Yb₁₄MnSb₁₁ coupon showed no measurable contact resistance after 1500 hr at 1273K.

Summary

- TE properties of Yb₁₄MnSb₁₁ was maintained after 6 month aging at 1273K or 1323K (no degradation).
- Stable sublimation suppression layer for Yb₁₄MnSb₁₁ has been developed.
- Sublimation life test with Yb₁₄MnSb₁₁ coupons demonstrated that sublimation suppression goal has been met continuously for 18 months.
- The contact resistance between the Mo metallization and the Yb₁₄MnSb₁₁ remained negligible after 1500hr of aging at 1273K
- These life test results successfully demonstrated that Yb₁₄MnSb₁₁ can be incorporated into high efficiency thermoelectric couples
- Couple test is currently conducted.

Acknowledgements

- Chen Kou Huang
 - providing Yb₁₄MnSb₁₁
- Billy Chun-Yip Li
 - providing metallized Yb₁₄MnSb₁₁ coupons
- George Nakatsukasa and Leslie D. Zoltan
 - measuring high temperature thermoelectric properties

Sublimation life test with n-SKD at 873K

Sublimation of skutterudites was successfully suppressed with aerogel

Sublimation life test with Yb₁₄MnSb₁₁ at 1323K

Accelerated test at 1323K also confirmed sublimation suppression of Yb₁₄MnSb₁₁ with alumina paste layer

Estimated sublimation rate through aerogel

Flux through porous media

$$J = \frac{2}{3} d \frac{\varepsilon}{\tau} \sqrt{\frac{8RT}{\pi M}} \frac{dC}{dx}$$

J=Flux, d=pore diameter of porous media, ε = porosity, τ =totuosity, R=8.314 J/mol·K, T=temperature, M=Molecular weight, C=concentration, x=distance

- If d = 50 nm, density of aerogel = 200 mg/cc, and x = 5 mm, estimated sublimation rate of Sb through aerogel at 700C is ~5.85×10⁻⁷ g/cm²hr.
- Aerogel is expected to show better sublimation suppression property with increasing density.
 - Average pore diameter decreases with increasing density

